Least-Squares Conditional Density Estimation
نویسندگان
چکیده
منابع مشابه
Least-Squares Conditional Density Estimation
Estimating the conditional mean of an input-output relation is the goal of regression. However, regression analysis is not sufficiently informative if the conditional distribution has multi-modality, is highly asymmetric, or contains heteroscedastic noise. In such scenarios, estimating the conditional distribution itself would be more useful. In this paper, we propose a novel method of conditio...
متن کاملSemi-Supervised Least-Squares Conditional Density Estimation
---Conditional density estimation is an useful alternative to regression to learn an input-output relationship under multi-modality, asymmetry, and heteroscedasticity. The supervised learning method called least-squares conditional density estimation (LSCDE) is the state-of-the-art method that directly estimates the conditional density using a linear model. In this paper, we extend the supervis...
متن کاملConditional Density Estimation via Least-Squares Density Ratio Estimation
Estimating the conditional mean of an inputoutput relation is the goal of regression. However, regression analysis is not sufficiently informative if the conditional distribution has multi-modality, is highly asymmetric, or contains heteroscedastic noise. In such scenarios, estimating the conditional distribution itself would be more useful. In this paper, we propose a novel method of condition...
متن کاملConstrained Least-Squares Density-Difference Estimation
We address the problem of estimating the difference between two probability densities. A naive approach is a two-step procedure that first estimates two densities separately and then computes their difference. However, such a two-step procedure does not necessarily work well because the first step is performed without regard to the second step and thus a small error in the first stage can cause...
متن کاملA Conditional Least Squares approach to bilinear time series estimation
In this paper we develop a Conditional Least Squares (CLS) procedure for estimating bilinear time series models. We apply this method to two general types of bilinear models. A model of type I is a special superdiagonal bilinear model which includes the linear ARMA model as a submodel. A model of type II is a standardized version of the popular bilinear BL(p, 0, p, 1) model (see e.g. Liu and Ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2010
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.e93.d.583